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A quasi-linear theory for rotating flow over topography. 
Part 2. Beta-plane annulus 
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(Received 16 July 1979 and in revised form 25 March 1980) 

An obstacle in westerly flow on a periodic ,8-plane can generate resonant Rossby 
waves and cause large perturbations to the flow field. The pattern and strength of the 
flow can vary markedly in response to relatively small changes in the forces driving 
the system. The aim of this paper is to develop a simple theory valid in these circum- 
stances. Such a theory has application to the dynamics of planetary scale quasi-steady 
perturbations in the atmosphere. 

A series of models for barotropic quasi-geostrophic flow in an annulus is presented. 
An implicit quasi-linear model, with zonally averaged flow parametrized in terms of 
topography shape and net zonal mass transport, gives good agreement with nonlinear 
calculations. In one case stable multiple equilibria are predicted and confirmed, but 
the multiplicity regime is small. 

1. Introduction 
This is the second part of an investigation of topographic effects on periodic quasi- 

geostrophic flow. The aim is to model the feedback between zonally averaged flow 
and wave-topography interactions, and hence accurately describe the response of 
the system to a particular driving force. By finding the response for a range of forces 
the effect of variations in the driving can be deduced. This has important application 
to the dynamics of large-scale flow perturbations in the atmosphere, which are almost 
stationary when averaged over several days. These patterns sometimes change from 
one quasi-steady configuration to another, for reasons that are not well understood. 
Charney & DeVore (1  979) suggest that internal fluctuations can trigger changes from 
one stable equilibrium to an alternative state. Along similar lines Hart (1979) has 
presented a theory involving multiple branches with a hysteresis effect as external 
forces vary. 

In part 1 (Davey 1980) a quasi-linear theory was developed to explain large responses 
to small forcing changes in terms of positive feedback between zonal flow, resonant 
Rossby waves, and topography in a /3-plane channel. Multiple steady states for fixed 
external parameters were found, but the inclusion of several waves and modification 
of the zonal flow profile severely reduced the multiple solution regime. Part 2 is an 
extension of that theory to annular geometry, to include the angular momentum 
budget relevant to motion on the surface of a sphere. Another reason for applying the 
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theory to an annulus is that these results can be more readily checked by laboratory 
experiment than those from the channel theory. 

Rossby waves in a rotating annulus with a free surface (but flat bottom topography) 
were investigated by Phillips (1965). The theoretical dispersion relation was verified 
by experiments with an oscillating paddle used to excite different frequencies. Close 
agreement with the dispersion relation for a 8-plane channel (Haurwitz 194Oa) waa 
also found. No resonance effects occurred because the waves generated damped out 
before travelling around the annulus. Holton (1971) has also studied Rossby waves 
in a p-plane annulus. A travelling source-sink system was used in experiments to 
specifically excite resonant waves with various zonal wavenumbers. There waa 
qualitative agreement with 8-plane channel theory. 

With regard to topographic effects, an interesting series of experiments using a 
rotating hemisphere has been described by Fultz & Long (1951), Long (1952), Fultz 
& Frenzen (1955) and Frenzen (1955). Westerly flow relative to an obstacle generated 
planetary waves with wavenumber depending on the relative angular speeds of the 
basic flow and the obstacle. The results are mainly descriptive, though the dispersion 
relation for Rossby-Haurwitz waves on a sphere (Haurwitz 1940b) was verified. A 
variety of obstacles was used, ranging from cylinders extending through the entire 
depth of the apparatus, to equator-pole ridges of fractional height. Varying the 
latitude of an obstacle showed that wave patterns were weaker at  higher latitudes. 
In the associated theoretical work friction effects and topographic drag were not 
considered, but only qualitative comparison with the experiments was sought. The 
quasi-linear theory presented in the following sections takes these effects into account. 

As in part 1 an implicit method with the zonally averaged flow parametrized in 
terms of the net circumpolar transport Q is used. Quasi-linear equations for the wave 
structure are then obtained, and these waves are in turn related to Q. The validity 
of the approximations involved is determined by comparing quasi-linear results with 
numerical solutions of the nonlinear quasi-geostrophic vorticity equation. 

The basic equations needed are given in the next section. The simplest implicit 
theory is described in 0 3 with analytic and numerical results. The nonlinear calcu- 
lations in 0 4 suggest a better parameterization, and the improved implicit theory used 
in $9 5 and 6 gives good agreement for a range of conditions. Multiple solutions are 
found when the latitude range is relatively large. In several cases unsteady nonlinear 
solutions are obtained instead of predicted multiple steady states. Application to the 
atmosphere and ocean is discussed in 0 7. 

2. Quasi-geostrophic equations 

figure 1. Non-dimensional variables are defined by 
Cylindrical polar co-ordinates will be used for the annular geometry shown in 

r = r*/r;C, z = z* /Ht ,  (u,v) = (u*,v*)/C*, t = ot*js, 

where asterisks denote dimensional terms. The vertical scale H,* is the average depth 
of the fluid, and the horizontal length scale is the inner radius r;". The horizontal 
velocity u* = (u*, w*) is relative to a reference frame rotating with angular velocity 
)j:. A rigid upper lid with relative angular velocity & 2Q,* is used to drive the system, 
so a velocity scale C* = r;" a,* is appropriate. 
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The annular geometry can be regarded aa an approximation to a region bounded 
by two latitude circles on a sphere. The fl-plane approximation for the variation of 
effective Coriolis force with latitude is 

f* = f:-p*(r*-r:), 

where 5-2 = *(r;F + r:). In  non-dimensional form 

f=f*/f:: = l - - f l ( r - rA) ,  

where B = B*r:/f;. (Further details are given in appendix C.) 
Other important non-dimensional parameters are the Rossby number 

E = C*/f2rf = !2$/ fA,  

and the Ekman number E = 2v/ f2 HZ2. ( v  is a vertical eddy viscosity.) These express 
respectively the ratio of inertial and viscous forces to the Coriolis force. The bottom 
topography is h = h,S(r, O) ,  with non-dimensional height scale h, = h,*/H$ and shape 

For slow large-scale flow over shallow obstacles the parameters w ,  B ,  E ) ,  f l  and h, 
are small (less than unity). Away from thin boundary layers the flow is almost geo- 
strophic and independent of z, and to a good approximation is governed by the quasi- 
geostrophic vorticity equation. This is 

4rY 8). 

wQ+ u . V(E~;+ h - pr )  + Ei5 = #E*CT (2.2) 

where t; and & are the internal and upper surface vertical vorticity components. 
The horizontal flow is non-divergent to this order of approximation, so a stream 
function $(r, 0) can be defined by 

u = -$e/r, v = $,.. (2.3) 

(For geostrophic flow $ is equivalent to a non-dimensional pressure field.) In  terms of 
$, (2.2) becomes 

(2.4) 

where J is the Jacobian operator 

uV2$t+ J(+,sVz$++-/3r)+ EiV2$ = 2E3Q0, 

J($,  X) = ($rXe- @oxr) lr ,  

and CT = 4R,for rigid-lid driving has been used. ( Qo = f 1 will be used to force westerly 
and easterly flow.) 

The side walls are streamlines, so boundary conditions are 

$(r1, 0, t )  = 0, $(r2,0,t) = Q(tL (2.5)  

where Q is the net zonal mass transport 

Q(t )  = sr'vdr. 
r1 

The system of equations is closed by the circulation condition 

f (mut + E h  - * E h T ) .  dl = 0, (2.7) 

as in part I. (Note that there is some redundancy in the non-dimensional parameters. 
If w ,  B,  p, E*, h, are all multiplied by the same constant the system is unchanged.) 
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FIQURE 1. The annulus geometry: (a) plan view, (b) side view. 

It is convenient to treat the flow as the sum of a zonal average and eddies. We put 

11. = W I + A  
where 

(Square brackets will indicate a zonal average.) From (2.5) boundary conditions for 
these components are 

$(p1,8, t )  = $P2,e, t )  = [$(?l, 01 = 0, 

[11.(rz,t)l = Q.  (2.8) 

(2.9) 

The zonally averaged vorticity equation is 

w[61t + [J($,  Eva$  + 7 q  + Eq63 = 2 E Q ) .  

Rearranging (2.9) and integrating using (2.7) at side walls gives the zonal average 
angular momentum equation 

w[rv]t + [$(SV2$ + h)J + E+W] = E h , ,  

[flux] = S[(bV2$,] = €[urv2$] = E[u(rv),] 

(2. 

(2. 

where wo = Qor. The eddy term in (2.10) is the sum of a radial eddy vorticity flux 

(equivalent to radial angular momentum advection), and a topographic drag 

[drag] = [$he] = [ruh]. 

Dividing by r and integrating (2.10) gives 

wQt + lr; r-l( [flux] + [drag]) dr + E*Q = EkQ,, (2.12) 

where Qo = /,: wo dr. In contrast to (2.15) in part 1, there is a contribution from eddy- 
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eddy interaction MI well as eddy-topography interaction. The flux term appears 
because rearrangement of angular momentum can change &, whereas rearrangement 
of linear momentum in the channel does not alter the net transport. 

If (2.10) is multiplied by r and integrated, then a moment equation 

w&+/"r[drag]dr+ E*M = E*& 
rI 

is obtained, where 

(2.13) 

revdr, M, = jY:r%,dr. 

This M-equation (as it will be called) has the advantage of having no nonlinear flux 
term. However, Q is needed for the boundary conditions on [+] and Q cannot be 
recovered directly from M, so in general (2.13) cannot be used as an alternative to 
the &-equation (2.12). (In later sections [v]  is parametrized and Q can then be found 
from M . The merits of (2.13) as a replacement for (2.1 2) in that context are discussed 
in $6.) 

From (2.4) the eddy vorticity equation is 

wV2$t + [w] (sV2$ + h)e/r + u [4+  h - Br], 
+ J(#,  s V ~ #  + h) - [J($,  €V2# + h)] + EgV2# = 0.  (2.14) 

The kinetic energy equation is 

+wKEt + E*KE = E h  vo [v] r dr, Iy: (2.15) 

where 

Equation (2.16) shows that in a steady (or statistically steady) state the K E  (or time 
average K E )  is decreased by any disturbance to the uniform flow v,. 

The nonlinear equations (2.9), (2.12) and (2.14) were solved numerically using the 
semi-spectral method described in appendix B. For the steady quasi-linear approxi- 
mations discussed in following sections, the eddy-eddy and eddy-topography inter- 
actions are omitted from the eddy vorticity equation. (The conditions for which this 
approximation is valid are not obvious in advance, due to the possible presence of 
resonant Rossby waves. One aim of this paper is to compare approximate and fully 
nonlinear results to test the above assumptions.) The approximate steady equations 
are 

[v] (eV2$ + h)e/r + u[s[+ h - Br], + E*V2$ = 0, (2.17) 
and 

E*[v] = E*v, - [$(eV2$ + h)e] /r .  (2 .18)  
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Note that (2.17) and (2.18) can be combined to give 

[vI2 = [vl vo + [q5V2q51, (2.19) 

a relation independent of the external parameters and the topography. 
Solving these equations still requires considerable effort due to the different feed- 

back between [flux], [drag] and [v] at each latitude. Further simplification is gained by 
parametrizing [w] in terms of Q. The eddy stream-function q5 can then be obtained aa 
a function of Q from (2.17). The &-equation thus becomes an implicit equation for Q. 

The simplest approximation is to ignore the feedback and put [w] = wo. (This is 
equivalent to the perturbation method described in part 1, appendix B.) The simplest 
implicit theory described in the next section uses the profile 

[vl = .,Q/&o = Qr, 
with Q/Qo = &/&,. 

3. The simplest implicit theory 
When [v] is approximated by the uniform zonal flow 

[v] = Rr 

the eddy vorticity equation (2.17) reduces to the quasi-linear equation 

Q(eV2q5 + h), +Pq5,/r + EiV2q5 = 0. (3.2) 

Further, Q and M are related to Q by 

Q = iQ(r i - r : ) ,  M = iQ(r i - r : ) .  

Thus Q and M are directly related by 

M = S(ri + r t )  Q.  

Analytic results, analogous to the simplest implicit channel theory of part 1, are given 
fist to d e h e  resonance conditions. 

(a) Analysis using orthogonal modes 

The topography is written as a Fourier-Bessel series 

1 

r m  n 
h = ho - x C Rmn(r) (jmn cos me + gmn sin me). 

The radial modes R,, are orthogonal eigenfunctions of 

(3.3) 

d dR 
&(  d r )  

r -  +(h2-m2/r)R = 0,  

with R(r,) = R(r2) = 0. (These modes depend on the zonal wavenumber m, so a single 
radial mode cannot be used as in part I .  Further details are given in appendix A.) 
The eddy streamfunction is likewise expanded as 

q5 = Qh, I: I: R,,(a,, cos me + b,, sin me), (3.4) 
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with corresponding vorticity 

1 
r 

V2# = - - ah, X 2 hkn Rmn(amn cos me + bmn sin me). 

From (3.2) we find 

amn = m{m(sQXn-P)fmn + E*XnngmnI/Dmn, 

bmn = m{m(sQhkn - B)  gmn - E'Xmfmn)/Dmn, 
where 

Dmn = m2(sRhkn - /3)2 + Eh4,,. 

303 

Large perturbations will occur if dissipation is small and sSZh2,, sz #?, i.e. if resonant 
Rossby waves are excited. 

The &-equation gives, using &/&, = Q/Q0, 

+€a -h%j(bmnamj-amn a b m3 . ) ) / r~r -2BmjRm,dr .  (3.6) 

From (3.5) anln and bmn are functions of Q/Q,, so (3.6) is an implicit equation 
for Q/a,. A simpler alternative to (3.6) can be found using the M-equation and 

O no 

M/Mo = np,: 

Note that these equations for a/Q0 are not equivalent. Using (3.7) avoids the flux 
term altogether, whereas [flux] must be calculated in the nonlinear theory, so we 
expect (3.6) to be more accurate. 

If only one radial mode, n say, appears for each m then the [flux] term vanishes in 
(3.6) leaving 

n 
(rz-r:) ( 1--  :J = h2- 0 o m  C. m2hkn ( f k n  +gkn)~r*r-2Rbndr/Dmn. ?I (3.8) 

This has the same structure as, but is still not equivalent to, (3.7). Both (3.7) and (3.8) 
have the same properties as the simplest implicit result in part 1. The ,&effect increases 
a/Q0 for easterly flow and decreases it, with the possible appearance of several res- 
onant peaks, forwesterlyflow. The dynamics can be similarly described as a balance of 
generation and relative advection of Rossby waves. As in part 1, there may be multiple 
solutions for SZ for given external parameters, but s2 is unique if the internal Rossby- 
number E&/&, is specified. 

The use of orthogonal modes is instructive, but to obtain actual solutions it is more 
convenient to use a numerical semi-spectral model. 

(b )  Numerical results 
For all calculations presented in this and subsequent sections the topography used 
has the form 

(3.9) h = h,,P(r) X f m  cosme, 
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with radial profile 

A triangular zonal profile with angular half-width Q, is represented by the Fourier 
seriea with 

f,,, = 2(1- cosmsw)/ne,m~. 

(Topography contours are given in figure 2 for 6, = 0.5 radians, rl = 1, rz = 3. Ten or 
more zonal wavenumbers were used in all calculations.) 

The eddy stream function is written as 

q5 = Re Z Z,(r) e-ho. 

With the transform r = rze-Y, (2.17) leads to the radial eddy structure equation 

(Em [.I/. + iEt)(Z,, - mW) - r(€[g],-/d) mZ = - r[v] h,mf,P(r). (3 .lo) 

When [u] = Rr it is useful to put 2 = Qh, Y so (3.10) becomes 

(sRm + iE+) (Y,, - mz Y )  + r@m Y = - rzrnmf, P. (3.11) 

The Q-equation gives 

(3.12) 
R E)(r! - r;) (1 - $) = hi I m  C ml,; ~ ( s Q Y , ,  + fmP)  dy. 

m 

Equations (3.11) and (3.12) can be rapidly solved numerically to find Q/R,. 
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FIGURE 3. Dependence of Q/Q, on en,, using the Q-equation with [v] = !&, 
B = 0.4, B* = 0.01, k, = 0.1 (solid line), h, = 0.2 (dashed line). 
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FIGURE 4. Dependence of Q/Qo on 6 from fully nonlinear model with same 
p"rameters as Sgure 3. h, = 0.1 (open circles), h, = 0.2 (solid circles). 

The results presented are for the parameter values /3 = 0-4, El = 0-01,0, = 0-5 and 
h, = 0.1,0.2. (These can be re-scaled as described earlier. The choice /3 = 0.4,r, = 3 
corresponds to latitude circles 22" and 67" on a rotating sphere. Small E i  is chosen 
to demonstrate resonance effects, and to explore the borderline between steady and 
unstable systems.) The response Q/Qo to varying forcing, as measured by en,, is 
shown in figure 3. Several minima appear for westerly flow (Q, = 1). Their positions 
correspond to the first few resonance points predicted by the analytic theory for 
n = 1. (These are sQ = /?/A:, = 0~078,0~059,0~042,0~030,0~022,0~017 for m = 1 to 6). 
The [flux] contribution to Q is found to be non-zero but small, so higher radial modes 
are involved but play a minor role. Multiple solutions are predicted for some ranges 
of e.  In  the next section these predictions are compared with fully nonlinear results. 

Q/Qo was also calculated using the M-equation. Curves of the same shape but with 
smaller Q/Qo were obtained, the difference increasing as h, increaaed. 
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FIQWRE 6. As for figure 4, showing AQp/Qo (dots) and AQD/QO (crosses) for ho = 0.1. 

FIGURE 6(a, b) .  For legend see facing page. 

4. Nonlinear results 
Steady solutions of the fully nonlinear equations were obtained by spinning up the 

system with constant forcing from some initial conditions. Figure 4 shows the vari- 
ation of Q/Qo with E using the same parameters and topography as for figure 3. A 
series of minima appear, as expected, but the predicted multiple equilibria are not 
found. The simple implicit theory predicts the resonance positions reasonably well for 
small h,, but in contrast to figure 3 the peaks in figure 4 do not shift and accentuate as 
h, is increased. Some of this discrepancy can be accounted for by using an improved 
theory, as described in the next section. 
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FIGURE 6. Streamlines (contours of $) from fully nonlinear model with B = 0.4, E )  = 0.01, 
h, = 0.1. (a) ' E  = 0.03, (a) E = 0-04, (c) E = 0.05, (d )  E = 0.06, (e) E = 0.07. 

The change in Q can be separated into two parts: 

AQF = E-* r-l [flux] dr. 

and 

(4.la) 

(4.1 b )  

AQF/Qo and AQD/Qo are plotted as functions of e in figure 5, for h, = 0.1. Both terms 
are always positive, with AQD larger but not always dominant. Note that AQF f AQD 
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FIQURE 7. As for figure 6, with h, = 0.2. (a) E = 0.03, (b)  E = 0.05, (c) E = 0.07. 

does not scale like e/h,,. For the example shown, AQF actually becomes less important 
as E increases. 

Flow patterns for several values of E are given in figure 6, for h, = 0.1. The wave- 
like perturbations extend right around the annulus. The decrease in zonal wavenumber 
aa e increases is clear. Relative to the zonal mean the perturbations are largest near 
the inner sidewall, as indicated by the closed gyres found in that region. As E is in- 
creased beyond the resonant range (E 7 0.07) the disturbance diminishes and the 
closed gyre is shifted further downstream from the obstacle. When the topography 
height is doubled the different zonal wavenumbers are less obvious and the system 
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FIGURE 8. Ae for figure 6, with E* = 0.02, h, = 0.04, 8, = 1. (a) E = 0.02, (b)  E = 0.06. 

is dominated by a large trough, as can be seen in figure 7. This behaviour is reflected 
in the coalescence of resonant points as h, increases, as explained in part 1. 

Figure 8 shows the effect of doubling the dissipation parameter E i .  Even though 
the topography height and width are also doubled, so large deviations are caused, the 
disturbance is local rather than global in character. The vorticity change induced by 
a change in latitude or topographic stretching is forgotten before a parcel of fluid can 
travel far around the annulus, so resonance effects are not important. Corresponding 
radial profiles for [v - v,], and the [flux] and [drag] components, are shown in figure 9. 
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FIQTJRE 9. Radial profiles of (1) [flux]/rE*, (2) [dra.g]/rEt, (3) [w-v,l, for the 
flows shown in figure 8. (a) E = 0.02, (b) E = 0.06. 

The [drag] is everywhere negative with a minimum somewhat off-centre. The [flux] 
term is much smaller and changes sign, and compensates the [drag] such that the 
[v-v,] minimum is more central than that due to [drag] alone. The [flux] and [drag] 
profiles change as e changes and a consistent approximation of them is not obvious. 
The [v - vO] profile is less sensitive however, and can be usefully parametrized. 

5. Improved quasi-linear model 
The profiles for [v - v,] given in the previous section suggest the approximation 

P(r) is the radial topography profile, and the parameter C is related to Q by 

pz( r )dr  = Qo-Q. 

This choice for [w] satisfies the side-wall conditions [w] = v,. It is supported by the 
analytic model of 5 3, which gives [w - vo] proportional to (R/r)2 for topography with 
one radial mode, and by the success of the same relation in part 1. Further, it seems 
physically reasonable to have the change in [v] largest where the obstacle is highest. 
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FIGURE 10. Dependence of Q/Qo on 6 according to the improved implicit theory using the Q -  
equation (solid lines) and the M-equation (dashed lines). Parameters are the same as in figure 
4, and the fully nonlinear results are repeated for comparison. 

0.3 

E 

Note that in contrast to the simpler basic flow Qr this new approximation has a non- 
zero vorticity gradient 

Given some value for C the corresponding eddy structure can be found from (3.10). 
The &-equation then gives a new estimate for &, and hence for C, and the process 
can be repeated. (In practice it is simpler to find h, for some estimate of C, then adjust 
C accordingly to  iterate to the required h,. It is also possible to iterate along lines of 
constant e&/&,, which is useful for investigating multiple solution regimes.) 

Figure 10 compares results obtained by this method with the nonlinear solutions 
shown in figure 4. There is good agreement for h, = 0.1, with positions and magnitudes 
of minima corresponding quite well. The quasi-linear solutions somewhat overestimate 
the attenuation of resonant points for larger h,, but are still satisfactorily close to the 
exact results. In  contrast to the simpler model, no multiple equilibria are predicted. 
The use of a more realistic [v] profile is a considerable improvement. 

C is also related to M by 

C r2P2(r) dr = M, - M ,  IT: 
and M is similarly related to &, so quasi-linear solutions for Q/Qo can alternatively be 
obtained using the M-equation. These results are included in figure 10. In general the 
M-equation method underestimates &/&,, particularly for small E ,  and the &-equation 
is preferable. For h, = 0.2 ande N 0-06, however, there is little to choose between them. 

Results for doubled dissipation and topography are given in figure 11, using the 
&-equation. Again agreement is good, even for changes in &/&, of up to 50 yo. As 
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FIGURE 12. Dependence of Q / Q ,  on e for fully nonlinear (circles), improved implicit (solid line), 
simple implicit (dashed line), and linear perturbation (dotted line) theories, for fl  = 0, ,574 = 0.01, 
h, = 0.1, Ow = 0.5. 

FIQIJRE 11. Dependence of Q / Q o  on B for fully nonlinear (circles) and improved 
implicit (solid line) models, with = 0.4, E* = 0.2, h, = 0.4, 8, = 1. 
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FIUURE 13. As for figure 10,'with r2 = 2 instead of 3. 

expected for larger dissipation there is no sign of individual resonant waves, and a 
broad minimum is found instead. 

For the case /3 = 0 a comparison of several models is given in figure 12. When 
[v] = IR,r the implicit theory reduces to the linear perturbation method used by 
Davey (1978) for anf-plane annulus. This method greatly overestimates the decrease 
in &/&, as E -+ 0. The simplest implicit technique gives an improved estimate, and the 
improved implicit method is better yet, but the topographic drag is still substantially 
overestimated for small E .  The difficulty is that when /3 = 0 the vorticity generated 
by u . Vh cannot be balanced by up, and must be balanced by friction effects alone as 
E + 0. The solution then depends heavily on the representation of u . Vh, particularly 
when E* is small. 

6. The effect of varying the annulus width 
The non-dimensional inner radius is rl = 1, by definition. Changing the outer 

radius r2 is equivalent to changing the latitude range on a sphere, and this effect is 
explored in this section. For the results given /3 is not changed as r2 varies, so the 
equivalent central latitude also vanes slightly. This effect can be compensated by 
rescaling the other external parameters. Details and tables of latitudes are given in 
appendix C. 

Fully nonlinear and quasi-linear results for &/Go are given in figures 13 and 14 for 
r2 = 2 and 4, and should be compared with figure 10. When r2 is reduced from 3 to 2 
(figure 13) resonant effects are greatly reduced. The decrease in meridional length 
scale increases the wavenumbers for free Rossby waves, which effectively increases 
their dissipation rate. (Analytically, the eigenvalues A2 described in appendix A 
increase as r2 decreases. Resonant values of E decrease correspondingly, as can be 
seen from the changes in scales for E in figures 10,13, and 14.) The quasi-linear approxi- 
mation is good for h, = 0.1, but overestimates the maximum change in & as h, 
increases. 
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FIQURE 14. As for figure 10, with rll = 4 instead of 3. 

FIGURE 15. Alternative stable states from the fully nonlinear model with r, = 4, = 0.4, 
E* = 0-01, h, = 0.1, E = 0.052. (a) High index state, Q/Qo = 0.93; (b) low index state, 
Q/Qo = 0.78. 

Increasing r2 to 4 (figure 14) has the opposite effect of enhancing the resonance 
effects. Multiple solutions are now predicted by the improved quasi-linear theory, and 
increming ho a t  first increases rather than decreases the predicted multiplicity regime. 
For ho = 0-1 the predicted behaviour is largely confirmed by the nonlinear results. 
Multiple equilibria are found at E = 0.052, with zonal wavenumber 4 dominating. 
Flow patterns for the alternative steady states are given in figure 15. An initial state 
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(u, v) = (0, v,) leads to a strongly zonal flow (figure 15a) with Q/Qo = 0-93, whereas 
a system initially at rest evolves to the pattern shown in figure 15b with Q/&, = 0.78 
and prominent wavenumber 4. 

Other multiple regions predicted for h,, = 0.1 were not verified. For zonal wave- 
number 3 solutions were found that evolved very slowly, and for m = 2 regular small 
amplitude oscillations developed. (The amplitude is indicated in figure 14, and the 
period is about 10 ‘days’.) At the larger values of 8 associated with these resonant 
modes the system is barotropically unstable for large perturbations. Hart (1979) and 
Charney & DeVore (1979) have discussed this effect in more detail; it involves an 
exchange of energy between eddies and mean flow via eddy-topography interactions. 

For h, = 0.2 the nonlinear and quasi-linear results agree for small 8, but as e in- 
creases irregular and slowly developing oscillations appear in the nonlinear system. 
(The ranges of some such fluctuations are given in figure 14.) The steady quasi-linear 
model is then useful only as a rough indicator of the average Q to expect. 

The quasi-linear model was also solved with r2 and varied to simulate expansion of 
meridional scale about some constant central latitude. Results similar to those already 
described were obtained as r2 varied. 

7. Summary and applications 
In  part 1 quasi-linear models of steady flow over topography in a periodic channel 

were presented. A similar hierarchy has been developed for an annular system in an 
effort to bridge the gap between channel and spherical geometry, and also to produce 
results more amenable to experimental veri6cation. 

The results are basically the same as part 1. The dynamics involves a balance of 
topographic generation and relative advection of Rossby waves, with small dissipa- 
tion. For westerly flow resonances can create large perturbations, with correspondingly 
reduced zonally averaged flow. Conditions for resonance can be estimated analytically 
using a uniform zonal flow profile. The Rossby-wave properties depend on the [v] 
profile however, and results were greatly improved by using a more realistic [v] related 
to the topography shape. 

The resulting improved implicit model is much simpler than a nonlinear one, and 
can be used to anticipate the behaviour of a system for a wide range of parameters. 
Predictions are generally in good agreement with exact nonlinear results, so the neglect 
of eddy interactions in the eddy vorticity equation is justified. The limits of validity 
seem to be indicated by the onset of multiple solutions. For relatively small h, and 8 

the nonlinear system has multiple states aa predicted. For larger values however 
oscillatory or irregular fluctuations develop through barotropic instability, and the 
steady quasi-linear approximation no longer applies. 

The main application of this theory is to the dynamics of large-scale perturbations 
in the atmosphere. (The emphasis is on dynamical descriptions of phenomena rather 
than quantitative calculations.) For large-scale forcing the response of the atmosphere 
typically has a similar pattern at all heights, so a barotropic model can be used M a 
first approximation. The B-plane annulus represents a region between latitudes where 
flow is dominantly zonal. The topography used in the theory can also be interpreted 
aa forcing by diabatic heating. (Note that the effective h, is smaller than its physical 
value because flow in the atmosphere is slower than average near ground level.) The 

FLM 103 I1 
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basic zonal flow is forced by some unspecified mechanism, but is ultimately related to 
the equator-pole temperature gradient. 

A realistic relaxation time is about 10 days, which corresponds to E i  = 0.01. This 
is the value usfd in most of the results described earlier. (The results given for E* = 0.02 
can be reinterpreted for E i  = 0.01 by halving the associated values of E ,  /I and h,.) 

For a large latitude range (r2 = 4) the response of the system is very sensitive to 
h, and E for 0.03 2 E 2 0.1. ( E  = 0.05 corresponds to a circulation time of 10 days in 
the absence of perturbations, so in practice E 2 0.05.) Small changes in forcing can 
cause major changes in the character of the flow. There may be a switch between low 
and high index stable states, like those shown in figure 15, or perhaps a change from 
stable to fluctuating conditions. These calculations show that the feedback mechanisms 
described in part 1, and extended in this paper, may play an important role in the 
dynamics of atmospheric phenomena such as large-scale blocking. 

For smaller latitude ranges the system is less sensitive. Multiple equilibria are not 
found, though their occurrence cannot be ruled out because the theory contains many 
approximations. (For example, the basic zonal flow and the topography are not 
realistic, and baroclinic effects are ignored.) Changes in E can still cause large changes 
in flow patterns, however, as seen in figure 6. The system is sensitive to changes in 
internal Rossby number s&/&, as well as E ,  so internal fluctuations as well as external 
driving changes can alter the flow. 

It is interesting to compare analytic resonance conditions for the channel and annular 
geometry. For r2 = 3 andp = 0.4, zonal wavenumbers 1 ,2 ,3 ,4  are resonant (EQ = / I / A 2 )  
for wind speeds of 39, 29, 21, and 15 m/sec respectively, at  latitude 45'. A channel of 
length L* = 2nR* sin $A and breadth R*($,- has corresponding resonant wind 
speeds of 35, 26, 19, and 13 m/sec, almost the same. The difference between channel 
and annulus models is more evident in the flow patterns. Perturbations in the annulus 
are asymmetric with respect to  latitude, being relatively larger at higher latitudes. 

Another difference between channel and annulus theories is the effect of meridional 
eddy vorticity flux on Q. For the cases investigated, this [flux] augments the net 
topographic [drag]. The topography used effectively had only one radial mode how- 
ever, so this effect was slight. 

The relevance of the theory to ocean currents is less direct. For planetary scales the 
oceanic Rossby number is much smaller than its atmospheric counterpart. Vorticity 
advection is negligible, and global Rossby-wave effects are not significant. Dissipation 
is also small, and in relatively weakly stratified regions such as the Southern Ocean 
currents tend to follow the large-scale contours of f / H .  Kamenkovich (1962) and 
Johnson & Hill ( 1975) have made use of this property to estimate topographic influence 
on the steady zonal transport by the Antarctic Circumpolar Current (A.C.C.). As 
mentioned in part 1, however, the eddy-topography mean flow interactions described 
by the quasi-linear theory may be important locally on intermediate scales. These 
smaller scales can in turn influence the large-scale mean circulation. For large length 
and topography height scales currents go around rather than over obstacles and there 
is a low correlation between $ and he. This constraint is less severe for smaller obstacles 
and shorter length scales, so the [drag] due to a medium size hill may be as important 
as that of a large ridge. Further, the pattern of flow over a moderate obstacle is more 
sensitive to changes in the driving force than is the flow around a large one, so varia- 
tions in the overall [drag] may well be determined by the medium scale dynamics. 
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The hybrid of planetary f / H  flow and quasi-linear theory required to test this 
hypothesis is beyond the scope of this paper, but would help resolve the question of 
the relative effects of a few large ridges and a field of smaller hills. Such a model would 
have direct application to the dynamics of the A.C.C., for which large fluctuations 
in the net circumpolar transport have been observed. 

Investigation of the M-equation and the effect of varying annulus width was made 
at  the suggestion of the referees. The semi-spectral numerical model was developed 
while the author was visiting the National Centre for Atmospheric Research, which 
is sponsored by the National Science Foundation. 

Appendix A. Orthogonal radial modes and Rossby waves 
The equation for the radial eigenfunctions R(r)  is 

-m2R+h2rR=0,  

with boundary conditions R(r,) = R(r2) = 0.  The change of variable 4h2r = x2 leads 
to Bessel's equation. This gives 

R(r) = J2m(v*/r4) YZ,(Zl) - Yh(Zl~*/rt) JBm(Z1) (A 2 )  

where x: = 4A2r, and Jzm, Yz, are Bessel functions of the first and second kind. The 
parameter xl, and hence h2, is determined by the requirement R(r2) = 0. The eigen- 
values hkn, corresponding to the nth zero of (A 2) for wavenumber m, can thus be 
calculated. The first few values for rl = 1, T~ = 3 are given in table 1. 

The orthogonality relation for these radial modes is 

Ir;R,Rndr = 0,  m + n. 

The free inviscid Rossby wave 
4 = R(r) eim(e-ct) 

1 
is a solution of 

wV"t +; /3#0 = 0 

if the angular wave speed is c = l / w h 2 .  In  particular, a free standing Rossby wave can 
exist in the uniform flow v = fir when 

Appendix B. FuUy nonlinear numerical model 

nonlinear numerical model. The stream function is written as 
A mixture of spectral and hite-difference methods was used to construct a fully 

@ = [@] + Z A,&, t )  COB m6 + Bm(r, t )  sin me, (B 1) 
11-2 
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with A, = B, = 0 on side walls. The topography is represented by 

h = h, Xf , ( r )  cos me + g,(r) sin me, (B 2) 

with f,, = g, = 0 on side walls for simplicity. 

tion 

Then, for example, 

The radial finite-difference calculations required are simplified by the transforma- 

r = r2e-l. (B 3) 

r2J(+, x) = + o x ,  - +,xo. 

With a uniform y-grid this transformation has the additional advantage of having 
the r-grid spacing smallest near the inner sidewall, where the flow is most sensitive to 
perturbations. 

For conservation of energy and enstrophy when the flow is inviscid the Jacobians 
must be rewritten as 

r2J($9 x) = wax,-- +,xo + ( + o x ) ,  - (+- ,x)o  
+ ($x,)e - ( + x o ) J  (B 4) 

= $($,x). 
With trapezoidal integration and differentiation in the form +,, = (+i+l - $i-l)/Ay, 
the usual rules for integration by parts can be used to verify the conservation con- 
straints. 

The vorticity is written as 

r2V2$ = W + C W A ,  cos me + WB, sin me 

W = [+I,, - m2[$], W A  = A,, - m2A, W B  = Buy -m2B. 

w w ,  = E+(2Q2,r2- W )  - [$(#, sV2# + h)] ,  

+WA, = - @ W A  - [COS me{$([+], eV2# + h) 

goWB, = -$E+WB- [~inme{$([+],sV24+h) 

(B 5 )  

(B 6) 
where 

The quasi-geostrophic vorticity equation gives 

(B 7 4  

+ $(A 6[+1,V +P + cv24 + 741, (B 7 b )  

+ f(4,B[+l,,-rST+BVa~+FY)l. (B 7c) 

W ,  W A ,  and WB,  are found by time stepping from some initial conditions. The 
stream function at each time step is obtained by solving (B 6). The sidewall conditions 
required to find [+] are found from the transport equation and circulation constraints. 

Advantages of the semi-spectral scheme are that the radial finitedifference equa- 
tions can be rapidly solved by tridiagonal matrix methods, and that only azimuthal 
spectral interaction coefficients are needed. (Further, these coefficients are & 1, so 
need not be stored.) This is particularly suitable for low resolution numerical experi- 
ments. Typically 10 to 15 zonal modes and about 30 radial grid points were adequate 
for the experiments described. 
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FIGURE 16. Contours of /? = 2 # ~  tan $~ / (1+# , /# , ) .  

Appendix C. Relation between spherical, annulus, and channel geometry 
Suppose a sphere has radius R* and rotation rate Q*, and we wish to approximate 

the region between co-latitudes $1 and $2 by a /3-plane annulus. The appropriate radii 
are r;" = R*$l and r; = R*$,. The B-plane approximation gives 

f* +:-/3*(r*--r%), 
where 

fs = 2Q2*C0sq5A, B* = 2Q*sin$JR*, 

~2 = R*$A = R*($,+ $2)/2. 

With length scale r t  we find 

with 
f =  1-/3(r-rA) 

B = /3*r;'/f 2 = $Itan $A = 2$A tan $ A / ( 1  + $2/$1)* 
Figure 16 gives contours of /3 for varying $2/$1 and $A, and is useful for resealing the 
external parameters. For example, table 2 a shows co-latitudes associated with 
@ = 0.4, $2/$1 = 2,3,4. If w, Ei ,B ,  E ,  h, are halved, the same solutions of the quasi- 
geostrophic equations apply to the co-latitudes given in table 2b for t? = 0.2. 

To approximate the same region by a B-plane channel, the relevant length and 
breadth is 

I?* =: 2nR* S i n  $A, b* = R*($, - 4,). 
If length scale L* = R*sin$, is chosen (as in part l),  then corresponding non- 
dimensional terms are 

1 = 2m, b = (9, -$,)/sin $A.  
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m = l  2 3 4 5 6 
n = l  5.12 6.76 9.47 13.2 17.9 23.4 

2 19.0 20.7 23.5 27.5 32.7 39.1 
3 42.0 43.7 46.6 50.6 55-8 62-3 

TABLE 1. Eigenvalues h i n  

$*I41 4 2 / $ l  

1 P 
( a ) B  = 0.4 2 3 4 (b) /3  = 0.2 2 3 4 

$A 40.4 45.3 49.3 # A  29.9 34.0 37-4 

4 2  53.9 68.0 78.9 $2 39.9 51.0 59.9 
$1 26.9 22-7 19.7 $1 19.9 17.0 15.0 

TABLE 2. Co-latitudes for various values of /3 and $*/Q1 = r2/rl  

The parameter for the p-effect, as defined in part 1, is 

/? = P*L*/ft = sin $A tan $A. 

For example, 
approximation. 

= 45" and $2/$1 = 3 requires b = 1.1 and /? = 0.7 for the channel 
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